Framework for Many-Objective Test Problems with Both Simple and Complicated Pareto-Set Shapes
نویسندگان
چکیده
Test problems have played a fundamental role in understanding the strengths and weaknesses of the existing Evolutionary Multiobjective Optimization (EMO) algorithms. A range of test problems exist which have enabled the research community to understand how the performance of EMO algorithms is affected by the geometrical shape of the Pareto front (PF), i.e., PF being convex, concave or mixed. However, the shapes of the Pareto Set (PS) of most of these test problems are rather simple (linear or quadratic), even though the real-world engineering problems are expected to have complicated PS shapes. The state-of-the-art in many-objective optimization problems (those involving four or more objectives) is rather worse. There is a dearth of test problems (even those with simple PS shapes) and the algorithms that can handle such problems. This paper proposes a framework for continuous many-objective test problems with arbitrarily prescribed PS shapes. The behavior of two popular EMO algorithms namely NSGAII and MOEA/D has also been studied for a sample of the proposed test problems. It is hoped that this paper will promote an integrated investigation of EMO algorithms for their scalability with objectives and their ability to handle complicated PS shapes with varying nature of the PF.
منابع مشابه
An Improved MOEA/D with Optimal DE Schemes for Many-Objective Optimization Problems
MOEA/D is a promising multi-objective evolutionary algorithm based on decomposition, and it has been used to solve many multi-objective optimization problems very well. However, there is a class of multi-objective problems, called many-objective optimization problems, but the original MOEA/D cannot solve them well. In this paper, an improved MOEA/D with optimal differential evolution (oDE) sche...
متن کاملThe Quasi-Normal Direction (QND) Method: An Efficient Method for Finding the Pareto Frontier in Multi-Objective Optimization Problems
In managerial and economic applications, there appear problems in which the goal is to simultaneously optimize several criteria functions (CFs). However, since the CFs are in conflict with each other in such cases, there is not a feasible point available at which all CFs could be optimized simultaneously. Thus, in such cases, a set of points, referred to as 'non-dominate' points (NDPs), will be...
متن کاملA Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کاملPareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملPERFORMANCE-BASED MULTI-OBJECTIVE OPTIMUM DESIGN FOR STEEL STRUCTURES WITH INTELLIGENCE ALGORITHMS
A multi-objective heuristic particle swarm optimiser (MOHPSO) based on Pareto multi-objective theory is proposed to solve multi-objective optimality problems. The optimality objectives are the roof displacement and structure weight. Two types of structure are analysed in this paper, a truss structure and a framework structure. Performance-based seismic analysis, such as classical and modal push...
متن کامل